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Discrete — Time Markov Chains

Many real-world systems contain uncertainty and
evolve over time.

Stochastic processes (and Markov chains)
are probability models for such systems.

A discrete-time stochastic process
is a sequence of random variables
Xy, X1, X5, . .. typically denoted by { X }.

Origins: Galton-Watson process 2 When and with
what probability will a family name become extinct?




Components of Stochastic Processes

The state space of a stochastic process is
the set of all values that the X s can take.

(we will be concerned with
stochastic processes with a finite # of states )

Time: n=0,1, 2, ...
State: v-dimensional vector, s = (s, S,, . . ., S,)
In general, there are m states,
sl,s2 ...,s" or sO sl, ..., 6 sm!

Also, X takes one of m values, so X, < s.




Gambler’s Ruin

At time O I have X, = $2, and each day I make a $1 bet.
[ win with probability p and lose with probability 1- p.
I’ll quit if I ever obtain $4 or if I lose all my money.

State spaceis S={0, 1, 2, 3, 4}

Let X, = amount of money I have after the bet on day n.

So, X, =

1=

3 with probabilty p
1 with probabilty 1- p

It X =4,then X ., =X .,

It X =0,then X ., =X .,




Markov Chain Definition

A stochastic process { X, } is called a Markov chain if

Pr{XrHl =j | XO - kO? ot Xn—l - kn—l? Xn= l}

=Pr{X.,=j| X,=i} <« transition probabilities
for every 14, j, ky, - - ., k, ; and for every n.
Discrete time means ne N={0, 1,2, ...}.

The future behavior of the system depends only on the

current state 1 and not on any of the previous states.




Stationary Transition Probabilities

PriX ..=J| X, =1}=Pr{X,=j| X,=1} foralln
(They don’t change over time)

We will only consider stationary Markov chains.

The one-step transition matrix for a Markov chain

with states S={0, 1, 2 } is

Poo Po1 Po2
P11 P12
P20 P21 P22

where p; = Pri X, =7 | X, =1}




Properties of Transition Matrix

If the state space S={0, 1, ..., m-1} then we have

2ip;=1 Vi and p;, 20 Vi j

(we must (each transition
go somewhere) has probability > 0)

Gambler’s Ruin Example




Computer Repair Example

Two aging computers are used for word processing.

When both are working in morning, there is a 30% chance that one
will fail by the evening and a 10% chance that both will fail.

If only one computer is working at the beginning of the day, there Is a
20% chance that it will fail by the close of business.

If neither is working in the morning, the office sends all work to a
typing service.

Computers that fail during the day are picked up the following
morning, repaired, and then returned the next morning.

The system is observed after the repaired computers have been
returned and before any new failures occur.




States for Computer Repair Example

Index

State

State definitions

=N ()

No computers have failed. The
office starts the day with both
computers functioning properly.

s = (1)

One computer has failed. The
office starts the day with one
working computer and the other in
the shop until the next morning.

Both computers have failed. All
work must be sent out for the day.




Events and Probabilities for Computer Repair Example

Index

Current
state

Events

Prob-
ability

Next state

0

s¥ = (0)

Neither computer fails.

0.6

=N (0)

One computer fails.

0.3

s'=(1)

Both computers falil.

0.1

s' =(2)

Remaining computer does
not fail and the other Is
returned.

0.8

s' =(0)

Remaining computer fails
and the other is returned.

s'=(1)

Both computers are
returned.

=N (0)




State-Transition Matrix and Network

The events associated with a Markov chain can be described by
the m x m matrix: P = (p,).

06 03 0.1

For computer repair example, we have:  SEINENERNPEIN

State-Transition Network
» Node for each state

* Arc from node i to node ; If p,; > 0.

For computer repair example:




Procedure for Setting Up a DTMC

Specify the times when the system is to be
observed.

Define the state vector s = (s, 55, . . ., 5,) and
list all the states. Number the states.

For each state s at time » 1dentify all possible
next states s' that may occur when the system is
observed at time »n + 1.

Determine the state-transition matrix P = (p,)).

Draw the state-transition diagram.




Repair Operation Takes Two Days

One repairman, two days to fix computer.
—> new state definition required: s = (s4, s,)
s, = day of repair of the first machine

s, = status of the second machine (working or needing repair)

For s,, assign 0 if 1t machine has not failed

1 if today is the first day of repair

2 If today Is the second day of repair
For s,, assign 0 if 2" machine has not failed

1 if it has failed




State Definitions for 2-Day Repair Times

Index State State definitions

s? = (0, 0) | No machines have failed.

st = (1, 0) | One machine has failed and today is in
the first day of repair.

s? = (2, 0) | One machine has failed and today is in
the second day of repair.

s3=(1, 1) | Both machines have failed; today one is
In the first day of repair and the other iIs
waiting.

s*=(2,1) |Both machines have failed; today one is
In the second day of repair and the
other Is waiting.




State-Transition Matrix for 2-Day
Repair Times

06 03 0 01 O
0O O 038 0.2
P={08 02 O

For example, p,, = 0.2 Is probability of going from state 1 to state
4 in one day,where st = (1, 0) and s*=(2, 1)




Brand Switching Example

Number of consumers switching from brand i in
week 26 to brand j in week 27

Brand |(j) 1 2 3 Total
(1)
1 90 7 3 100
2 5 205 40 250

3 30 18 102 150
Total 125 230 145 500

This is called a contingency table.

—> Used to construct transition probabilities.




Empirical Transition Probabilities
for Brand Switching, p;;

) 1 2 3

90




Markov Analysis

e State variable, X = brand purchased in week »

« {X } represents a discrete state and discrete time stochastic
process, where S={1,2,3}and N={0,1, 2, .. .}.

o If {X } has Markovian property and P is stationary, then a
Markov chain should be a reasonable representation of aggregate
consumer brand switching behavior.

Potential Studies

- Predict market shares at specific future points in time.
- Assess rates of change in market shares over time.

- Predict market share equilibriums (if they exist).

- Evaluate the process for introducing new products.




Transtform a Process to a Markov Chain

Sometimes a non-Markovian stochastic process can
be transformed into a Markov chain by expanding

the state space.

Example: Suppose that the chance of rain tomorrow
depends on the weather conditions for the previous two
days (yesterday and today).

Specifically,

Pr{ rain tomorrow
Pr{ rain tomorrow
Pr{ rain tomorrow
Pr{ rain tomorrow

rain last 2 days (RR) } = 0.7
rain today but not yesterday (NR) }= 0.5
rain yesterday but not today (RN) }= 0.4
no rain in last 2 days (NN) } = 0.2

Does the Markovian Property Hold ?




The Weather Prediction Problem

How to model this problem as a Markov Process ?

The state space: 0= (RR) 1= (NR) 2= (RN) 3 = (NN)

The transition matrix:
O(RR) 1(NR) 2(RN) 3(NN)
O (RR) 0.7 0 0.3 0
= 1 (NR) 0.5 0 0.5 0]

2 (RN) O 04 0 0.6
3(NN) O 02 0 0.8

This is a discrete-time Markov process.




Multi-step (n-step) Transitions

The P matrix is for one step: nton + 1.

How do we calculate the probabilities for transitions
Involving more than one step?

Consider an IRS auditing example:

Two states: s =0 (no audit), s' =1 (audit)

Transition matrix 1de {

0.6 04
0.5 0.5

Interpretation: p,, = 0.4, for example, is conditional probability of
an audit next year given no audit this year.




Two-step Transition Probabilities

Letp(;.) be probability of going from i to j in two transitions.

In matrix form, P) = P x P, so for IRS example we have

b2 _ 0.6 04 0.6 0.4] [0.56 0.44
05 05| |05 05| |055 0.45

The resultant matrix indicates, for example, that the probability of
no audit 2 years from now given that the current year there was no

audit is po) = 0.56.




n-Step Transition Probabilities

This idea generalizes to an arbitrary number of steps.
For n=3: P8 =PRI P =P2P = P3

or more generally, P" = Pm pn-m)

The i th entry of this reduces to

m
p,™ = 2. pu™ py ™ 1<m<n-1
k=0

Chapman - Kolmogorov Equations

Interpretation:
RHS is the probability of going from i to k in m steps
& then going from k to jin the remaining n — m steps,
summed over all possible intermediate states k.




n-Step Transition Matrix for IRS .

Time, n

Transition matrix, P

0.6
0.5

0.4
0.5

0.56
0.55

0.44
0.45

0.556
0.555

0.444
0.445

0.5556
0.5555

0.4444
0.4445

|

0.55556
0.55555

0.44444
0.44445




Gambler’s Ruin Revisited for p = 0.75

State-transition network




Gambler’s Ruin with p=0.75, n = 30

O 1 3 4

1 O O O O
0.325 0.675
0.1 O O 0.9
0.025 0.975
O O O O 1

(¢ is very small nonunique number)

What does matrix mean?

A steady state probability does not exist.




DTMC Add-in for Gambler’s Ruin

Markov Chain Transition Matrix
| Type: DTMC Step
Title:imbler_Ruin ,CalculateMeasure
@
.Analyze
State
Names
State O
State 1
State 2
State 3
State 4

Index
Economics 0

Transient

Steady State

n-step Probabilities

First Pass
Simulate

Absorbing States

Matrix Analyzed.
2 Recurrent States
2 Recurrent Sate Classes
3 Transient States
0 1 2
Sate0 Satel Sat

e?2

3
Sate 3

4
Sate 4

1

0

0.25

0.75

0

0

0
0
0

0

0.75

0

1

Sum

Status
1 dass1
1 Transient
1 Transient
1 Transient
1 Cass2




30-Step Transition Matrix for
Gambler’s Ruin

A

n-Step Transition Matrix

Type: DTMC 30 step Transition Matrix 30 step Cost

Title:imbler_RuSteps/iterf 29| 0 1 2 3 Average Present
State 0 Statel State2 Sate3d Sated per step Worth

‘Start State 0 1 0 0 0 0
State 1 0.325 2.04E-07 0 6.12E07 0.674999

‘ More State 2 0.1 0 4.08E-07 0 0.9
State 3 0.025 6.8E-08 0 2.04E-07 0.975

‘Matrix Sate 4 0 0 0 0 1

A

Absorbing State Anc 2 absorbing state classes

Type: DTMC 3 transient states
Title:ximbler_Ruin

Matrix showslong term transition probabilitiesfrom transient to absorbi
‘ Matrix Class-1 Class-2
State 0 Sate 4
Transient State 1 0.325

Transient State 2 0.1
Transient State 3 0.025




Conditional vs. Unconditional Probabilities

Let state space S={1, 2, ..., m}.
Let pi be conditional n-step transition probability = P,

Let q(n) = (g4(n), . . ., g,(n) be vector of all unconditional
probabilities for all m states after n transitions.

Perform the following calculations:

q(n) = q(0)P" or q(n) = q(n-1)P

where q(0) is initial unconditional probability.

The components of q(n) are called the transient
probabilities.




Brand Switching Example

We approximate ¢,(0) by dividing total customers using brand i
In week 27 by total sample size of 500:

q(0) = (125/500, 230/500, 145/500) = (0.25, 0.46, 0.29)

To predict market shares for, say, week 29 (that is, 2 weeks into
the future), we simply apply equation with »n = 2:

q(2) = q(0)P?

0.90 0.07 0.03T
q(2) = (0.25,0.46,0.29) | 0.02 0.82 0.16
020 0.12 0.68

= (0.327, 0.406, 0.267)

= expected market share from brands 1, 2, 3




Transition Probabilities for n Steps

Property 1: Let{X,:n=0, 1, ...} be a Markov chain with state
space S and state-transition matrix P. Then for i and
jeS,andn=1,2,.

Pr{X,=j|X,=i}=p."

where the right-hand side represents the ;! element
of the matrix P".




Steady-State Probabilities

Property 2: Let & = (7, 7y, . . ., w,,) IS the m-dimensional row
vector of steady-state (unconditional) probabilities for
the state space S = {1,...,m}. To find steady-state

probabilities, solve linear system:

nt = P, ijl’mnj:l, 7,20, j=1,..m

Brand switching example:
0.90 0.07 0.03

(m, 7y, w3) =7y, w5, 7w3) | 0.02 0.82 0.16
020 0.12 0.68




Steady-State Equations for Brand
Switching Example

7, = 0.907, + 0.027, + 0.207,

r,=0.0/7, + 0.827, + 0.127, .
Total of 4 equations In

m3=0.037, + 0.167, + 0.687, 3 unknowns
Tt +tay=1

7,20, 1,20, 73>0

=» Discard 3" equation and solve the remaining system to get :
mr,=0.474, n,=0.321, n;=0.205
=» Recall:  ¢,(0) =0.25, ¢,(0) =0.46, ¢4(0) =0.29




Comments on Steady-State Results

1. Steady-state predictions are never achieved in actuality due to a
combination of

(i) errors in estimating P
(i) changes in P over time

(il1) changes in the nature of dependence relationships
among the states.

. Nevertheless, the use of steady-state values Is an important
diagnostic tool for the decision maker.

. Steady-state probabilities might not exist unless the Markov
chain is ergodic.




Existence of Steady-State Probabilities

A Markov chain is ergodic if it is aperiodic and allows
the attainment of any future state from any initial state

after one or more transitions. If these conditions hold,
then

For example, State-transition network

08 0 0.2
P={04 03 0.3
0 09 01

Conclusion: chain is ergodic.




Game of Craps

The game of craps is played as follows. The player rolls a
pair of dice and sums the numbers showing.

e Total of 7 or 11 on the first rolls wins for the player
e Total of 2, 3, 12 loses

e Any other number is called the point.

The player rolls the dice again.
e If she rolls the point number, she wins
e [f she rolls number 7, she loses

 Any other number requires another roll

The game continues until he/she wins or loses




Game of Craps as a Markov Chain

All the possible states

<y

P4 PS5 P6 P8 P9 P10

Continue




'
e
@)
2
»)
Z.
7p)
Q.
©
e
@)
G
O
»)
C
®©
@)




Game of Craps

2 3 4 5 6 7 8 9 10 11 12
0.028 0.056 0.083 0.111 0.139 0.167 0.139 0.111 0.083 0.056 0.028

Probability of win = Pr{7 or 11 } = 0.167 + 0.056 = 0.223
Probability of loss = Pr{ 2, 3, 12} = 0.028 + 0.056 + 0.028 = 0.112

Start Win Lose P4 P5 P6 P8 P9 P10

0.222 0.111 0.083 0.111 0.139 0.139 0.111 0.083_
1 0 0 0 0
0 1 0 0 0

0.75 0
0

o

0.

O O O O o o o o

0
0
0
0
0
69
0
0




Transient Probabilities for Craps

q(n) | Start  Win  Lose
q(0) 1 0 0
q(1)
q(2)
q(3)
q(4)
q(5)

This is not an Markov chain so where you
start is important.




Absorbing State Probabilities for Craps

Initial state| WIin
Start 0.493
P4 0.333
P5 0.400
PG 0.455
P8 0.455
P9 0.400
0.333




Interpretation of Steady-State Conditions

. Just because an ergodic system has steady-state probabilities

does not mean that the system “settles down” into any one state.

. The limiting probability 7; is simply the likelihood of finding the

system in state j after a large number of steps.

. The probability that the process is in state j after a large
number of steps is also equals the long-run proportion of time

that the process will be in state j.

. When the Markov chain is finite, irreducible and periodic, we
still have the result that the //, j € S, uniquely solve the
steady-state equations, but now ; must be interpreted as the

long-run proportion of time that the chain is in state j.




What You Should Know About
Markov Chains

ow to define states of a discrete time process.
ow to construct a state-transition matrix.

ow to find the n-step state-transition
orobabilities (using the Excel add-in).

How to determine the unconditional
orobabilities after » steps

How to determine steady-state probabilities
(using the Excel add-in).




