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Discrete – Time Markov Chains

Many real-world systems contain uncertainty and 
evolve over time.  

Stochastic processes (and Markov chains)
are probability models for such systemsare probability models for such systems.

A discrete-time stochastic process
i f d i blis a sequence of random variables 
X0, X1, X2, . . .  typically denoted by { Xn }.

Origins: Galton-Watson process When and with 
what probability will a family name become extinct?



Components of Stochastic Processes

The state space of a stochastic process is 
the set of all values that the Xn’s can take.n

(we will be concerned with 
stochastic processes with a finite # of states )

Time: n = 0, 1, 2, . . .

State: v-dimensional vector, s = (s1, s2, . . . , sv)

In general, there are m states, 

s1, s2, . . . , sm or  s0, s1, . . . , sm-1

Also, Xn takes one of m values, so Xn ↔ s.n n



Gambler’s Ruin
At time 0 I have X0 = $2, and each day I make a $1 bet.  
I win with probability p and lose with probability 1– p.  
I’ll quit if I ever obtain $4 or if I lose all my moneyI ll quit if I ever obtain $4 or if I lose all my money.

State space is S = { 0, 1, 2, 3, 4 }

Let Xn = amount of money I have after the bet on day n.

1

3 with probabilty 
So,  

1 with probabilty 1
p

X
p

⎧
= ⎨ −⎩

If Xn = 4, then Xn+1 = Xn+2 = • • • = 4.

⎩

If Xn = 0, then Xn+1 = Xn+2 = • • • = 0.



Markov Chain Definition

A stochastic process { X } is called a Markov chain if A stochastic process { Xn } is called a Markov chain if 

Pr{Xn+1 = j | X0 = k0, . . . , Xn-1 = kn-1, Xn = i }

= Pr{ Xn+1 = j | Xn = i } ← transition probabilities

for every   i, j, k0, . . . , kn-1 and for every n. 

Discrete time means n ∈ N = { 0, 1, 2, . . . }.Discrete time means n ∈ N  { 0, 1, 2, . . . }.

The future behavior of the system depends only on the 
current state i and not on any of the previous states.



Stationary Transition Probabilities

Pr{ Xn+1 = j | Xn = i } = Pr{ X1 = j | X0 = i }  for all n

(Th  d ’t h   ti ) (They don’t change over time) 

We will only consider stationary Markov chains.

The one-step transition matrix for a Markov chain 

with states S = { 0, 1, 2 } iswith states S  { 0, 1, 2 } is

⎥
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⎢
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where pij =  Pr{ X1 = j | X0 = i }



Properties of Transition Matrix

If the state space S = { 0, 1, . . . , m–1} then we have

∑  1  ∀ i d   ≥ 0  ∀ i  j ∑j pij = 1  ∀ i and   pij ≥ 0  ∀ i, j 

(we must (each transition 
 h ) h  b bili  0)go somewhere) has probability ≥ 0)

Gambler’s Ruin ExampleGambler s Ruin Example

0 1 2 3 4
0 1 0 0 0 00 1 0 0 0 0
1 1-p 0 p 0 0
2 0 1-p 0 p 0
3 0 0 1 03 0 0 1-p 0 p
4 0 0 0 0 1



Computer Repair Example
• Two aging computers are used for word processing.

• When both are working in morning, there is a 30% chance that one 
will fail by the evening and a 10% chance that both will fail.

• If only one computer is working at the beginning of the day, there is a 
20% chance that it will fail by the close of business.

• If neither is working in the morning, the office sends all work to a g g,
typing service.  

• Computers that fail during the day are picked up the followingComputers that fail during the day are picked up the following 
morning, repaired, and then returned the next morning.

• The system is observed after the repaired computers have been• The system is observed after the repaired computers have been 
returned and before any new failures occur.



States for Computer Repair Example

Index State State definitions

0 s = (0) No computers have failed.  The 
office starts the day with both 
computers functioning properly.

1 s = (1) One computer has failed.  The 
office starts the da ith oneoffice starts the day with one 
working computer and the other in 
the shop until the next morning.

2 s = (2) Both computers have failed.  All 
work must be sent out for the day.



Events and Probabilities for Computer Repair Example

C E P b NIndex Current 
state

Events Prob-
ability

Next state

0 s0 = (0) Neither computer fails 0 6 s' = (0)0 s  (0) Neither computer fails. 0.6 s  (0)

One computer fails. 0.3 s' = (1)

Both computers fail. 0.1 s' = (2)

1 s1 = (1) Remaining computer does 0 8 s' = (0)1 s  (1) Remaining computer does 
not fail and the other is 
returned.

0.8 s  (0)

Remaining computer fails 0 2 s' = (1)Remaining computer fails 
and the other is returned.

0.2 s = (1)

2 s2 = (2) Both computers are 1.0 s' = (0)( ) p
returned.

( )



State-Transition Matrix and Network

The events associated with a Markov chain can be described by 
the m × m matrix: P = (pij).

⎤⎡
(pij)

For computer repair example, we have:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
02.08.0
1.03.06.0

P
⎥⎦⎢⎣ 001

State-Transition Network
(0 6)

• Node for each state

• Arc from node i to node j if pij > 0. 0

(0.6)

For computer repair example:
2 1

(1)

(0.3)(0.1)

(0.8)

(0.2)



Procedure for Setting Up a DTMC

1. Specify the times when the system is to be 
observedobserved.

2. Define the state vector s = (s1, s2, . . . , sv) and 
list all the states Number the stateslist all the states.  Number the states.

3. For each state s at time n identify all possible 
next states s' that may occur when the system isnext states s' that may occur when the system is 
observed at time n + 1.

4 Determine the state transition matrix P = (p )4. Determine the state-transition matrix P = (pij).

5. Draw the state-transition diagram.



Repair Operation Takes Two Days

One repairman, two days to fix computer.

t t d fi iti i d ( )new state definition required: s = (s1, s2)

s1 = day of repair of the first machine 

s2 = status of the second machine (working or needing repair)

For s1, assign 0 if 1st machine has not failedFor s1, assign 0  if 1 machine has not failed

1  if today is the first day of repair

2 if today is the second day of repair2  if today is the second day of repair

For s2, assign 0  if 2nd machine has not failed

1  if it has failed



State Definitions for 2-Day Repair Times

Index State State definitions

0 0 (0 0) hi h f il d0 s0 = (0, 0) No machines have failed.

1 s1 = (1, 0) One machine has failed and today is in 
the first day of repair.

2 s2 = (2, 0) One machine has failed and today is in 
the second day of repairthe second day of repair.

3 s3 = (1, 1) Both machines have failed; today one is 
in the first day of repair and the other is y p
waiting.

4 s4 = (2, 1) Both machines have failed; today one is 
i th d d f i d thin the second day of repair and the 
other is waiting.



State-Transition Matrix for 2-Day 
R i  TiRepair Times

1
0

2008000
01.003.06.0
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⎢
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⎥
⎥
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00010
10000
⎥
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For example, p14 = 0.2 is probability of going from state 1 to state 
4 in one day,where s1 = (1, 0) and s4 = (2, 1)



Brand Switching Example
Number of consumers switching from brand i in 

week 26 to brand j in week 27

Brand (j) 1 2 3 Total

(i)(i)

1 90 7 3 100

2 5 205 40 2502 5 205 40 250

3 30 18 102 150
lTotal 125 230 145 500

This is called a contingency table.This is called a contingency table.

Used to construct transition probabilities.



Empirical Transition Probabilities 
f  B d S it hi  for Brand Switching, pij

Brand (j) 1 2 3Brand (j) 1 2 3

(i)
90 7 3

1

2

90 0.90
100

=
7 0.07

100
=

3 0.03
100

=

5 0 02 205 40 0 162

3

0.02
250

= 205 0.82
250

= 0.16
250

=

30 0 20 18 102 0 683 30 0.20
150

= 18 0.12
150

= 0.68
150

=

Steady 
state 



Markov Analysis
S i bl X b d h d i k• State variable,  Xn =  brand purchased in week n

• {Xn} represents a discrete state and discrete time stochastic 
process where S {1 2 3} and N {0 1 2 }process, where S = {1, 2, 3} and N = {0, 1, 2, . . .}. 

• If {Xn} has Markovian property and P is stationary, then a 
Markov chain should be a reasonable representation of aggregateMarkov chain should be a reasonable representation of aggregate 
consumer brand switching behavior.

Potential StudiesPotential Studies

- Predict market shares at specific future points in time.

A f h i k h i- Assess rates of change in market shares over time.

- Predict market share equilibriums (if they exist).

- Evaluate the process for introducing new products.



Transform a Process to a Markov Chain

Sometimes a non-Markovian stochastic process can 
be transformed into a Markov chain by expanding 
the state space. 

Example:  Suppose that the chance of rain tomorrow 
d d   th  th  diti  f  th  i  tdepends on the weather conditions for the previous two
days (yesterday and today).  

SpecificallySpecifically,
Pr{ rain tomorrow⏐rain last 2 days (RR) } = 0.7
Pr{ rain tomorrow⏐rain today but not yesterday (NR) }= 0.5
P { i  t ⏐ i  t d  b t t t d  (RN) }  0 4Pr{ rain tomorrow⏐rain yesterday but not today (RN) }= 0.4
Pr{ rain tomorrow⏐no rain in last 2 days (NN) } = 0.2

D  th  M k i  P t H ld ?  Does the Markovian Property Hold ?  



The Weather Prediction Problem

How to model this problem as a Markov Process ?

The state space:  0 = (RR)  1 = (NR) 2 = (RN)  3 = (NN)

The transition matrix:

0 (RR) 0.7 0 0.3 0
0(RR)  1(NR) 2(RN)  3(NN)

P = 1 (NR) 0.5 0 0.5 0
2 (RN) 0 0.4 0 0.6
3 (NN) 0 0 2 0 0 83 (NN) 0 0.2 0 0.8

This is a discrete-time Markov process.



Multi-step (n-step) Transitions

The P matrix is for one step: n to n + 1.

How do we calculate the probabilities for transitions 
involving more than one step?  

C id IRS diti lConsider an IRS auditing example:

Two states:  s0 = 0 (no audit),  s1 = 1 (audit)

Transition matrix ⎥⎦

⎤
⎢⎣

⎡
=

5.05.0
4.06.0

P

Interpretation: p01 = 0.4, for example, is conditional probability of 
an audit next year given no audit this yearan audit next year given no audit this year.



Two-step Transition Probabilities

Let pij be probability of going from i to j in two transitions.(2)

In matrix form, P(2) = P × P, so for IRS example we have

⎤⎡⎤⎡⎤⎡ 44056040604060
⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡
×⎥⎦

⎤
⎢⎣

⎡
=

45.055.0
44.056.0

5.05.0
4.06.0

5.05.0
4.06.0)2(P

The resultant matrix indicates, for example, that the probability of 

dit 2 f i th t th t thno audit 2 years from now given that the current year there was no 

audit is p00 = 0.56.(2)



n-Step Transition Probabilities
This idea generalizes to an arbitrary number of steps.

For n = 3: P(3) = P(2) P = P2 P = P3

or more generally, P(n) = P(m) P(n-m)

The ij th entry of this reduces toThe ij th entry of this reduces to

pij
(n) = ∑ pik

(m) pkj
(n-m) 1 ≤ m ≤ n−1

m

k=0

Chapman - Kolmogorov Equations
Interpretation: 

RHS is the probability of going from i to k in m steps 
& then going from k to j in the remaining n − m steps, g g j g p ,
summed over all possible intermediate states k.



n-Step Transition Matrix for IRS Example

0 6 0 4⎡ ⎤

Time, n Transition matrix, P(n)

0.6 0.4
0.5 0.5
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 56 0 44⎡ ⎤

1

0.56 0.44
0.55 0.45
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 556 0 444⎡ ⎤

2

0.556 0.444
0.555 0.445
⎡ ⎤
⎢ ⎥
⎣ ⎦

0.5556 0.4444⎡ ⎤

3

0.5556 0.4444
0.5555 0.4445
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 55556 0 44444⎡ ⎤

4

0.55556 0.44444
0.55555 0.44445
⎡ ⎤
⎢ ⎥
⎣ ⎦

5



Gambler’s Ruin Revisited for p = 0.75

State-transition network
p p

1 2 3 40
1 − p

p p
p

State-transition matrix

1 − p 1 − p

0 1 2 3 4
0 1 0 0 0 0

State transition matrix

1 0.25 0     0.75 0 0
2 0     0.25 0     0.75 0
3 0 0     0 25 0     0 753 0 0     0.25 0     0.75
4 0 0 0 0 1



Gambler’s Ruin with p = 0.75, n = 30

0 1 2 3 4
0 1 0 0 0 00 1 0 0 0 0
1 0.325 ε 0 ε 0.675
2 0.1 0 ε 0 0.9P(30) = 2 0.1 0 ε 0 0.9
3 0.025 ε 0 ε 0.975
4 0 0 0 0 1

P(30) = 

(ε is very small nonunique number)

What does matrix mean?

A d   b bili  d  iA steady state probability does not exist.



DTMC Add-in for Gambler’s Ruin 

A B C D E F G H I J K L M N

1
2
3
4
5
6

Markov Chain Transit ion Mat r ix
Typ e: DTMC St ep Mat r ix Analyzed .
Tit le:am b ler_Ruin Calculat e Measure 2 Recur ren t  St at es

Change Week 2 Recur ren t  St at e Classes
Analyze 3 Transien t  St at es

S 0 1 2 3 46
7
8
9

10
11

St at e 5 0 1 2 3 4
Index Nam es St at e 0 St at e 1 St at e 2 St at e 3 St at e 4 Sum St at us

Econom ics 0 St at e 0 St at e 0 1 0 0 0 0 1 Class-1
1 St at e 1 St at e 1 0.25 0 0.75 0 0 1 Transien t

Transient 2 St at e 2 St at e 2 0 0.25 0 0.75 0 1 Transien t
3 St at e 3 St at e 3 0 0 0 25 0 0 75 1 Transien t11

12
13
14
15
16

3 St at e 3 St at e 3 0 0 0.25 0 0.75 1 Transien t
St eady St at e 4 St at e 4 St at e 4 0 0 0 0 1 1 Class-2

Sum 1.25 0.25 1 0.75 1.75
n-st ep Probabilit ies

First  Pass
17
18
19
20
21

Sim ulat e

Absorbing St at es



30-Step Transition Matrix for 
Gambler’s RuinGambler s Ruin

1
2

A B C D E F G H I J K L M N

n-St ep Transit ion Mat r ix
Typ e: DTMC 30 st ep Transit ion Mat r ix 30 st ep Cost2

3
4
5
6
7
8

Typ e: DTMC 30 st ep Transit ion Mat r ix 30 st ep Cost
Tit le:am b ler_Ru St ep s/It er 29 0 1 2 3 4 Average Present

St at e 0 St at e 1 St at e 2 St at e 3 St at e 4 per  st ep Wor t h
St ar t 0 St at e 0 1 0 0 0 0 0 0

1 St at e 1 0.325 2.04E-07 0 6.12E-07 0.674999 0 0
More 2 St at e 2 0.1 0 4.08E-07 0 0.9 0 0

3 St at e 3 0 025 6 8E-08 0 2 04E-07 0 975 0 08
9

10

3 St at e 3 0.025 6.8E-08 0 2.04E-07 0.975 0 0
Mat r ix 4 St at e 4 0 0 0 0 1 0 0

Li iti b bilitiLimiting probabilities

1
2

A B C D E F G H I J K

Absorbing St at e Ana 2 ab sorb ing st at e classes
Typ e: DTMC 3 t ransien t  st at es

3
4
5
6
7

yp
Tit le:am b ler_Ruin

Mat r ix show s long t erm  t ransit ion  p rob ab ilit ies f r om  t ransien t  t o  ab sorb i
Mat r ix Class-1 Class-2

St at e 0 St at e 4
Transien t St at e 1 0.325 0.675

8
9

10

Transien t St at e 2 0.1 0.9
Transien t St at e 3 0.025 0.975



Conditional vs. Unconditional Probabilities

Let state space S = {1, 2, . . . , m }.

Let p be conditional n step transition probabilit  P(n)(n)Let pij be conditional n-step transition probability P(n).

Let q(n) = (q1(n), . . . , qm(n)) be vector of all unconditional 
b biliti  f  ll t t  ft  t iti

(n)

probabilities for all m states after n transitions.

Perform the following calculations:  Perform the following calculations:  

q(n) = q(0)P(n) or  q(n) = q(n–1)P

where q(0) is initial unconditional probability  where q(0) is initial unconditional probability. 

The components of q(n) are called the transient
probabilitiesprobabilities.



Brand Switching Example 
W i (0) b di idi l i b dWe approximate qi(0) by dividing total customers using brand i
in week 27 by total sample size of 500:

q(0) (125/500 230/500 145/500) (0 25 0 46 0 29)q(0) = (125/500, 230/500, 145/500) = (0.25, 0.46, 0.29)

To predict market shares for, say, week 29 (that is, 2 weeks into 
the future) we simply apply equation with n = 2:the future), we simply apply equation with n = 2:

q(2) = q(0)P(2)

20.90 0.07 0.03
(2) (0.25,0.46,0.29) 0.02 0.82 0.16

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥

q
0.20 0.12 0.68⎢ ⎥⎣ ⎦

= (0.327, 0.406, 0.267) 

= expected market share from brands 1, 2, 3



Transition Probabilities for n Steps a s t o  obab t es o  n Steps 

Property 1: Let {X : n = 0 1 } be a Markov chain with stateProperty 1: Let {Xn : n  0, 1, . . .} be a Markov chain with state 
space S and state-transition matrix P.  Then for i and
j ∈ S, and n = 1, 2, . . .j ∈ S, and n  1, 2, . . .

Pr{Xn = j | X0 = i} = pij
(n)

where the right-hand side represents the ijth element 
of the matrix P(n).



Steady-State Probabilities

Property 2: Let π = (π1, π2, . . . , πm) is the m-dimensional row 
vector of steady-state (unconditional) probabilities for 
the state space S =  {1,…,m}. To find steady-state 
probabilities, solve linear system: 

Σπ = πP,  Σj=1,m πj = 1,  πj ≥ 0,  j = 1,…,m

Brand switching example:

( ) ( ) ⎥
⎥
⎤

⎢
⎢
⎡

= 16.082.002.0
03.007.090.0

,,,, 321321 ππππππ
⎥
⎥
⎦⎢

⎢
⎣ 68.012.020.0

π1 + π2 + π2 = 1, π1 ≥ 0, π2 ≥ 0, π3 ≥ 0π1 + π2 + π2  1,  π1 ≥ 0,  π2 ≥ 0,  π3 ≥ 0



Steady-State Equations for Brand 
Switching ExampleSwitching Example

π1 = 0.90π1 + 0.02π2 + 0.20π3

π2 = 0.07π1 + 0.82π2 + 0.12π3

π3 = 0.03π1 + 0.16π2 + 0.68π3

Total of 4 equations in 
3 unknowns

π1 + π2 + π3 = 1

π1 ≥ 0,  π2 ≥ 0,  π3 ≥ 01 , 2 , 3

Discard 3rd equation and solve the remaining system to get :

π1 = 0.474,  π2 = 0.321,  π3 = 0.205

Recall: q1(0) = 0.25,  q2(0) = 0.46,  q3(0) = 0.29



Comments on Steady-State Results

1. Steady-state predictions are never achieved in actuality due to a 
combination of 

(i) errors in estimating P

(ii) changes in P over time

(iii) changes in the nature of dependence relationships 
among the states. 

2. Nevertheless, the use of steady-state values is an important 
diagnostic tool for the decision maker.

3. Steady-state probabilities might not exist unless the Markov 
chain is ergodic.



Existence of Steady-State Probabilities

A Markov chain is ergodic if it is aperiodic and allows 
the attainment of any future state from any initial state 
after one or more transitions If these conditions hold  after one or more transitions. If these conditions hold, 
then

( )lim n
j ijn

pπ
→∞

=
n→

For example, State-transition network

⎥
⎥
⎤

⎢
⎢
⎡

= 3.03.04.0
2.008.0

P 1 2

⎥
⎥
⎦⎢

⎢
⎣ 1.09.00

3

Conclusion: chain is ergodic.
Craps



Game of Craps

The game of craps is played as follows.  The player rolls a 
pair of dice and sums the numbers showing. 

• Total of 7 or 11 on the first rolls wins for the player
• Total of 2, 3, 12 loses
• Any other number is called the point.

The player rolls the dice again.

• If she rolls the point number, she wins
• If she rolls number 7, she loses
• Any other number requires another roll

The game continues until he/she wins or loses



Game of Craps as a Markov Chain

All the possible states

Start

Wi LoseWin Lose

P4 P5 P6 P8 P9 P10

Continue



Game of Craps Network

not (4,7) not (5,7) not (6,7) not (8,7) not (9,7) not (10,7)

P4 P5 P6 P8 P9 P10

5 6 8

Wi
5 6 8 9

4
5 6 8

10

9
7

77
7

7
7

Start

Win Lose4 1010 7

(7, 11) (2, 3, 12)



Game of Craps
Sum 2 3 4 5 6 7 8 9 10 11 12

Prob. 0.028 0.056 0.083 0.111 0.139 0.167 0.139 0.111 0.083 0.056 0.028

Probability of win = Pr{ 7 or 11 } = 0.167 + 0.056 = 0.223

Probability of loss = Pr{ 2, 3, 12 } = 0.028 + 0.056 + 0.028 = 0.112

    Start Win Lose P4 P5 P6 P8 P9 P10

 Start  0 0.222 0.111 0.083 0.111 0.139 0.139 0.111 0.083
 Win 0 1 0 0 0 0 0 0 0Win  0 1 0 0 0 0 0 0 0
 Lose  0 0 1 0 0 0 0 0 0 
 P4  0 0.083 0.167 0.75 0 0 0 0 0 

P = P5 0 0 111 0 167 0 0 722 0 0 0 0 P5  0 0.111 0.167 0 0.722 0 0 0 0
 P6  0 0.139 0.167 0 0 0.694 0 0 0 
 P8  0 0.139 0.167 0 0 0 0.694 0 0 

P9 0 0 111 0 167 0 0 0 0 0 722 0 P9  0 0.111 0.167 0 0 0 0 0.722 0
 P10  0 0.083 0.167 0 0 0 0 0 0.75 

 



Transient Probabilities for Craps

Roll, n q(n) Start Win Lose P4 P5 P6 P8 P9 P10

0 q(0) 1 0 0 0 0 0 0 0 0

1 q(1) 0 0.222 0.111 0.083 0.111 0.139 0.139 0.111 0.083

2 q(2) 0 0.299 0.222 0.063 0.08 0.096 0.096 0.080 0.063

3 q(3) 0 0.354 0.302 0.047 0.058 0.067 0.067 0.058 0.047

4 q(4) 0 0.394 0.359 0.035 0.042 0.047 0.047 0.042 0.035

5 q(5) 0 0.422 0.400 0.026 0.030 0.032 0.032 0.030 0.026

This is not an ergodic Markov chain so where you 
start is importantstart is important.



Absorbing State Probabilities for Craps

Initial state Win Lose 
St t 0 493 0 507Start 0.493 0.507
P4 0.333 0.667 
P5 0.400 0.600
P6 0.455 0.545 
P8 0.455 0.545
P9 0.400 0.600 
P10 0.333 0.667 

 



Interpretation of Steady-State Conditions

1. Just because an ergodic system has steady-state probabilities 
does not mean that the system “settles down” into any one state.

2. The limiting probability πj is simply the likelihood of finding the 
system in state j after a large number of steps.

3. The probability that the process is in state j after a large 
number of steps is also equals the long-run proportion of time 
that the process will be in state j.

4 When the Markov chain is finite  irreducible and periodic  we 4. When the Markov chain is finite, irreducible and periodic, we 
still have the result that the �j, j ∈ S, uniquely solve the 
steady-state equations, but now πj must be interpreted as the j

long-run proportion of time that the chain is in state j.



What You Should Know About 
M k  Ch iMarkov Chains

• How to define states of a discrete time process.
• How to construct a state-transition matrixHow to construct a state transition matrix.
• How to find the n-step state-transition 

probabilities (using the Excel add in)probabilities (using the Excel add-in).
• How to determine the unconditional 

b bili i fprobabilities after n steps
• How to determine steady-state probabilities 

(using the Excel add-in).


